Technology Development for Planetary Protection Jan 26, 2010 Cassie Conley, NASA HQ Planetary Protection Officer ## Planetary Protection Policy Planetary Protection - Preserve planetary conditions for future biological and organic constituent exploration - avoid forward contamination; preserve our investment in scientific exploration - Protect the Earth and its biosphere from potential extraterrestrial sources of contamination – avoid backward contamination; provide for safe solar- system exploration Complies with Article IX of the 1967 Outer Space Treaty Science class should not end in tragedy.... Science class should not ### Planetary Protection Trade-Offs - Backward contamination involves a careful analysis of the potential for extraterrestrial life to be returned to Earth within a sample - Requires a conservative approach to executing sample return missions, despite the fact that extraterrestrial life cannot be proven to exist - The difficulties of protecting the entire populace of the Earth from a biological unknown must be balanced against - The benefit of learning about extraterrestrial worlds - The benefit of learning about possible (or not?) extraterrestrial life - Forward contamination of other worlds is governed by the presence of extraterrestrial Earth-like environments - There is no question that life exists here - Earth microbes are proving to be much more robust survivors than once was believed - Increasingly, there is evidence that Earth-like environments on other planets also exist ## Planetary Environments are Diverse The unaltered surfaces of most planets are cold, and by being cold, are dry - spacecraft can change this - possible subsurface oceans, both hot and cold - subsurface rock, similar (?) to inhabited Earth rocks ### Earth Organisms are Diverse ## Biological Diversity on Spacecraft Planetary Protection Spacecraft assembly cleanrooms impose selective pressures on microbial inhabitants: oligotrophic (few particulates), harsh chemistry (cleaned with bleach), low microbial influx (ideally...) Sampling of microbial populations on spacecraft is important to understand the diversity of hitchhiker organisms: numbers as well as complexity. Community-level analysis has not been attempted, but will be critical to assess probability of growth. ### Planetary Protection Technologies Planetary Protection #### Prelaunch/Operations Technologies - Assays for rapid assessment of cleanliness (cultivable, non-cultivable, molecular) - H₂O₂ and/or radiation sterilization of assembled subsystem - Development of Mars orbital debris analysis code - Aseptic assembly systems - Particle transport models - Cleaning to sterility #### Launched Hardware - *In situ* sterilization systems - Container sealing systems - Earth targeting improvements - Meteoroid protection on spacecraft - Earth entry vehicle for assured containment - Lightweight biobarriers for forward contamination prevention - Mechanism or series of mechanisms for "break-the-chain" of contact #### Sample Handling Systems - Multi-directional containment systems for sample handling - Systems for analysis of contained samples (Sample Receiving Facility) #### Research Required to Inform the Development of Technologies - Fundamental biology of survivability (microbial characterization in HW environments) - Advanced spacecraft designs allowing sterilization, aseptic assembly, late RPS installation - Materials screening to enable system/subsystem sterilization ### Planetary Protection Support Structure - ROSES Planetary Protection Research (PPR) funds basic research on: - The capabilities of Earth life to survive in other planetary environments - The adaptation of existing technologies (microbial reduction, enumeration, etc.) for use in spacecraft assembly environments - Modeling of planetary environments (e.g., transport mechanisms) to support assessing level of forward contamination concern - Flight Projects/Programs fund development of late-TRL technologies: - Demonstrate technologies relevant to that mission (e.g., biobarriers) - Evaluate spacecraft materials and components for compatibility with approved treatment modalities - Modeling efforts to demonstrate compliance with planetary protection requirements - Nobody funds: - Progression of early TRL technologies, from a multi-mission standpoint, to a level such that a single mission could continue development ### Planetary Protection Funding - ROSES Planetary Protection Research (PPR) funding: - Normally makes new selections in the range of \$3-500K - Due to funding cuts, this year the funds available for new PPR starts is <100K - Continuing support for microbial detection, materials compatibility, and modeling research activities - The PPO budget at HQ also funds some coordination activities with ESA, e.g., validation of microbial reduction technologies - SBIRs and other funding vehicles provide a small supplement - Mars Planetary Protection Technology Program at JPL: - Previously funded a variety of microbial detection, reduction, modeling, and materials compatibility development efforts - Currently, nearly all funding is directed towards microbial detection using molecular biology methods, in response to SSB recommendations - Other missions are making an effort: - ASRG has recently been in communication on how to accommodate planetary protection requirements on a fully sterilized spacecraft: Unfortunately, there's not a lot of useful information available... ### Recent Successes - ESA-NASA coordination effort is bearing fruit: - Jan. 23 review of work to extend the Dry Heat Microbial Reduction specifications to higher temperatures: very successful - Ongoing efforts to approve technologies evaluated by NASA/JPL and ESA ESA resources are completing work that NASA/JPL started - Joint funding for work to provide consistent protocols for approving new technologies, coordinate acceptance of planetary protection assays, etc. #### Mars Program: - MSL embedded bioburden assessments allow the mission to meet total bioburden requirements - Biobarrier technologies worked perfectly on Phoenix ### Planetary Protection Requirements - Assignment of categories for each specific mission/body is to "take into account current scientific knowledge" via recommendations from scientific advisory groups. - Categorization depends on the nature of the mission and on the target planet - Examples of specific constraints include: - Limitations on spacecraft operating procedures - Inventory of spacecraft hardware and materials - Documentation of spacecraft trajectories and material archiving - Reduction of spacecraft biological contamination - Restrictions on the handling of returned samples - Probabilistic requirements allow derivation of numerical limits on microbial contamination pre-launch ### Planetary Protection Mission Categories | PLANET
PRIORITIES | | MISSION
TYPE | | SSION
GORY | |----------------------|---|-----------------|---|---------------| | Α | Not of direct interest for understanding the process of chemical evolution. No protection of such planets is warranted. | Any
f | | 1 | | В | Of significant interest relative to the process of chemical evolution, but only a remote chance the contamination by spacecraft could jeopardize future exploration. Documentation is required. | Any
nat | | II | | С | Of significant interest relative to the process of chemical evolution and/or the origin of life or for | Flyby, O | rbiter | Ш | | | which scientific opinion provides a significant chance of contamination which could jeopardize a future biological experiment. Substantial documentation and mitigation is required. | Lander, | Probe | IV | | All | Any Solar System Body | | Earth-Return V "restricted" or "unrestricted" | |